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Camera Geometry

How do we capture light?
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Camera Geometry

How do we capture light?
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Why?

Science for the Curious Photographer, Steve Seitz



What is a Camera?

Camera = Pinhole

Science for the Curious Photographer, wikipedia



What is a Camera?

Camera = Pinhole

Powerful Mathematical Model

Science for the Curious Photographer, wikipedia



Camera Geometry

Pinhole Camera Model
• What are the consequences of this model?
• Imagine you project a 3D point onto the image plane
• Where did it come from?
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Camera Geometry

Recovering 3D Geometry

• Consider two cameras (one is never enough)
• Take pictures
• Maps to points on image planes
• Know linear constraint on 3D point from left camera
• Use right camera constraint to intersect
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Camera Geometry

Many Considerations

• Do we know camera parameters? (intrinsic calibration)
• Do we know orientations of cameras? (extrinsic calibration)
• Match features (representation,matching,robustness)
• Do the backprojected rays intersect? (structure estimation)
• Extend this principle to multiple images
• Non-trivial, but many important advances
• State-of-the-art can handle large datasets (> 104 images)
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What’s a Good Camera Model?

Camera Systems

• Camera imaging surface - typically a rectangular plane
• Human retina is closer to a spherical surface
• Vastly different image plane geometries
• Fundamental 3D-2D imaging model is the same
• Spatial sampling is uniform for typical cameras
• Omnidirectional cameras



Camera Model : Perspective Projection

• Very simple geometry
• Sufficiently powerful representation
• Virtual Image considered in front of focus
• Real cameras do deviate from this model



Camera Model : Perspective Projection
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• Coordinate system with origin at camera centre
• World coordinates of point P = (X ,Y ,Z)

• Image projection measured in local image coordinate system
• Image coordinates p = (x, y)

By simple similarity of triangles we have
x = f X

Z

y = f Y
Z



Camera Model : Perspective Projection

Changing focal length

• Keep camera fixed, change focal length
• What happens to the volume imaged?

Science for the Curious Photographer ; Forstyh and Ponce 2nd Edition.



Camera Model : Perspective Projection

x = f X
Z

y = f Y
Z

Implications
• Different points are scaled different according to depth
• Introduces non-linearities in the relationships
• Distant objects are smaller
• Cannot judge object size with a single image



Perspective projection

• Cannot judge object size with a single image
• Judgement of size can be wrong!

From twitter.com/rainmaker1973
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Two co-ordinate systems!

• Remember that we have two measurements of interest
• Measurements on the image plane
• Measurements in the 3D world

• Our interest is to relate the two



Camera Model (contd.)

Consider perspective projection model[
x
y

]
=
f
Z

[
X
Y

]
Now let’s translate the frame of reference (or camera), new co-ordinates[

x
′

y
′

]
=

f
Z + tz

[
X + tx
Y + ty

]



Camera Model (contd.)

Consider perspective projection model[
x
y

]
=
f
Z

[
X
Y

]
Now let’s translate the frame of reference (or camera), new co-ordinates

x
′

= f
(X + tx)
(Z + tz)

y
′

= f
(Y + ty)
(Z + tz)



Camera Model (contd.)

Or if we were to rotate the camera by rotation matrix R

R =

 r11 r12 r13
r21 r22 r23
r31 r32 r33


The new 3D coordinates would be X

′

Y
′

Z
′

 =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 X
Y
Z





Camera Model (contd.)

Therefore, the new image projections would look like

x = f
r11X + r12Y + r13Z
r31X + r32Y + r33Z

y = f
r21X + r22Y + r23Z
r31X + r32Y + r33Z

• Now if we apply an additional transformation, the two rotations
would get entangled

• End result of multiple transformations is very messy!
• Need a cleaner approach



Homogeneous Representations

To arrive at a solution, we take recourse to geometry

Geometric approaches

• “Purist” view - co-ordinate free approach to geometry
• Classical theorems due to Euclid
• Since Descartes, there’s an algebraic view of geometric constructs
• Duality : Geometry↔ Algebra

• Circle : Centre + Radius↔ (p − p0)
T
(p − p0) = r2



Homogeneous Representations

Consider a line y = mx + c
Rewrite as mx − y + c = 0

or generally as
ax+by+c = 0

Rewriting this we have

[
a b c

]  x
y
1

 = 0



Homogeneous Representation of a Line

[
a b c

]︸ ︷︷ ︸
l

p︷ ︸︸ ︷ x
y
1

 = 0

this results in a nice symmetric form

lT p = 0

This form has many advantages over y = mx + c form



Homogeneous Representation of a Line

Consider the intersection of two lines
To solve for the point of intersection

y = m1x + c1
y = m2x + c2

Solve simultaneous equations by substitution, x = (y−c1)
m1

y = (y − c1)
m2

m1
+ c2

(1− m2

m1
)y = c2 −

c1m2

m1

y = =
(c2 − c1m2

m1
)

(1− m2
m1
)

Quite a mess!!



Homogeneous Representation of a Line

In the homogeneous system of representation we have

l 1
T p = 0

l2
T p = 0

Therefore, the co-ordinates of the intersection is given by

p = l 1 × l2

Verify
• l 1T (l 1 × l2) = 0
• l2T (l 1 × l2) = 0
• Much cleaner way of solving



Homogeneous Representation of a Line

Consider the line through two given points

(X1,Y1)

(X2,Y2)

Line : Y=mX+c

Usual solution is messy
Instead, using homogeneous coordinates, we get the dual representation

Line : l = p1 × p2
Easily verified that this satisfies the requirements

• (p1 × p2)
T p1 =0

• (p1 × p2)
T p2 =0



Homogeneous Representation

The key relationship to note is that

[
a b c

]︸ ︷︷ ︸
l

p︷ ︸︸ ︷ x
y
1

 = 0

results in a nice symmetric (and homogeneous) form

lT p = 0

This form has many advantages over y = mx + c form



Homogeneous Representation

In homogeneous form everything upto unknown scalar

Homogeneous

Rn 7→ Rn+1

[
u
v

]
7→

 u
v
1



Inhomogeneous

Rn 7→ Rn−1 u
v
w

 7→ [
u
w
v
w

]

Homogeneous Forms

• Embed in higher dimensions by appending a 1 (canonical)
• Homogeneous forms are equivalent upto scale
• Only ratios matter
• [u, v,w] = λ [u, v,w] ,∀λ 6= 0
• Notice [0, 0, 0] is not admissible
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John Stillwell, Mathematics and its History: A Concise Edition



Geometries in Computer Vision

• Geometry : Topological Space + Axioms
• Different set of axioms  Different Geometries

• Euclidean (Distances and Angles)
• Affine (Parallelism)
• Projective (Straight Line)
• Non-linear (Riemannian Manifolds)

Stratification of transform space

Euclidean ⊂ Affine ⊂ Projective



Euclidean Geometry

Axioms of incidence
• Familiar concepts from Euclidean geometry
• Length is a fundamental property of Euclidean Geometry
• Construction with straightedge and compass
• Axioms of Euclid

Following Hilbert state the axioms as

• For any two points A, B, a unique line passes through A, B
• Every line contains at least two points
• There exist three points not all on the same line
• Parallel axiom : For any line L and point P outside L, there is

exactly one line through P that does not meet L



Wikipedia

• Two points have a unique line through them (join)
• Two lines have a unique intersection point (meet)
• What happens when the lines are parallel?
• What does it mean to say that they “intersect at∞”?



• Question : Are all ∞ intersection points the same?
• The answer lies in the geometry of projective space
• Recall homogeneous representations



Homogeneous Forms

Parallel Lines

• Recall line equation: lT p = 0

• l and p upto scale factor lT p = (λl)T (λ
′
p) = 0

• Intersection of two lines p = l 1 × l2
• When are lines parallel?
• l 1 =

[
a b c

]
• l2 =

[
a b c

′ ]
• Intersection point p?
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Homogeneous Forms

Parallel Lines

• Recall line equation: lT p = 0

• l and p upto scale factor lT p = (λl)T (λ
′
p) = 0

• Intersection of two lines p = l 1 × l2
• When are lines parallel?
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[
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Homogeneous Forms

p = l 1 × l2 =
[
(c

′ − c)b (c − c′)a 0
]

= [b,−a, 0]

What is the inhomogeneous form of p?

Parallel Lines
• Recall line equation: l = p1 × p2
• l and p upto scale factor
• Intersection of two lines p = l 1 × l2
• When are lines parallel?
• l 1 =

[
a b c

]
• l2 =

[
a b c

′ ]
• Intersection point p?



Homogeneous Forms

p = l 1 × l2 =
[
(c

′ − c)b (c − c′)a 0
]

= [b,−a, 0]

What is the inhomogeneous form of p?
Distinct “points at infinity”

Parallel Lines
• Recall line equation: l = p1 × p2
• l and p upto scale factor
• Intersection of two lines p = l 1 × l2
• When are lines parallel?
• l 1 =

[
a b c

]
• l2 =

[
a b c

′ ]
• Intersection point p?



Projective Geometry

• Represent the projective plane as P2

• Obtained by adding all ∞ points
• ∞ points form a ‘line at infinity’. Why?
• Got rid of special case of parallel lines
• All lines have a unique intersection now
• So what is this space useful for?



Projective Geometry

(d) P2 ≡ S2 (e) P2 ≡ R3\{0}/ '

• Projective plane is topologically equivalent to unit sphere
• Associate with half-sphere to projective scale
• Where is the line at infinity on S2?
• P2 is equivalent to R3 with origin removed, under equivalence

relationship of scale



Homogeneous Form

Basic Definition
• n-dim real affine space is set of all points
(x1, · · · , xn) εRn

• Projective space Pn given by
• (x1, · · · , xn, xn+1) εRn+1

• at least one xi is non-zero
• for λ 6= 0, all (λx1, · · · , λxn, λxn+1) are equivalent

• Homogeneous coordinates obtained by (x1, · · · , xn, 1)



Homogeneous Form

• Let the homogeneous form be X = (X 1, · · · ,X n+1)

• Let the inhomogeneous form be x = (x1, · · · , xn)
• Equivalence relationship : [x, 1] = (x1, · · · , xn, 1) ' X
• xi = X i

X n+1

Line at Infinity

• Question: What is the homogeneous form for points at ∞?
• Is this homogeneous form [x, 1] always valid?
• [x, 0] is also in projective space
• [x, 0] does not have a finite inhomogenous form
• Projective Space: [x, 1] (affine space) ∪ [x, 0] (line at ∞)

















Camera = Camera Centre!
• Consider a centre of projection
• Establishes equivalence classes
• All points on ray are projectively equivalent (beads on wire)
• What happens when they line up?
• Camera model



Transformation Groups



 h11 h12 h13
h21 h22 h23
h31 h32 h33

  h11 h12 h13
h21 h22 h23
0 0 1

  r 11 r 12 t1
r21 r22 t2
0 0 1


Projective Affine Euclidean



Euclidean

 x
′

y
′

z
′

 =

 h11 h12 h13
h21 h22 h23
h31 h32 h33

 x
y
z


Projective

 x
′

y
′

z
′

 =

 h11 h12 h13
h21 h22 h23
h31 h32 h33

 x
y
z


Two interpretations

• Euclidean vs. Projective transformations
• H : R3 → R3 (9 dof)
• H : P2 → P2 (8 dof)



Projective Geometry

Since in projective space

Pn, all (λx1, · · · , λxn, λxn+1)

are equivalent, we can linearise our imaging model
Recall that [

x
y

]
=

1
Z

[
X
Y

]
For now assume f = 1
then by embedding image and world points in projective spaces we have x

y
1

 =
1
Z

 X
Y
Z





Projective Geometry

We now have  x
y
1

 =
1
Z

 X
Y
Z


Recall, that scaled points are projectively equivalent, i.e. x

y
1

 =

 X
Y
Z


p = P

We have now managed to linearise the relationship



Projective Geometry

Projective representations for both image and world points

 x
y
1

 =

 1 0 0 0
0 1 0 0
0 0 1 0



X
Y
Z
1


Euclidean transformation of 3D points

X
′

Y
′

Z
′

1

 =


r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1



X
Y
Z
1





Projective Geometry

General process of taking a picture
• Apply Euclidean motion to 3D points
• Project onto image plane

Combining two steps we get

 x
y
1

 =

 1 0 0 0
0 1 0 0
0 0 1 0



X

′

Y
′

Z
′

1



⇒

 x
y
1

 =

 1 0 0 0
0 1 0 0
0 0 1 0



r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1



X
Y
Z
1



⇒

 x
y
1

 =
[
R t

] 
X
Y
Z
1





Projective Geometry

 x
y
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0 1 0 0
0 0 1 0



r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1



X
Y
Z
1



Taking a Picture

• 3D Point in Homogeneous Form
• Rigid 3D Motion
• Ideal Pinhole Camera
• Image Projection
• P3 → P2



Projective Geometry
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Taking a Picture

• 3D Point in Homogeneous Form
• Rigid 3D Motion
• Ideal Pinhole Camera
• Image Projection
• P3 → P2



Camera Model

Intrinsic Parameters
• Focal length f
• Shift in origin or image center (u0, v0)
• Rectangular pixel dimensions (ku, kv)
• Imaging plane may be skewed by angle θ

Many deviations from an idealised model
Makes the entire imaging model very messy



Projective Geometry

Further, the effects of the camera parameters can be represented as a
matrix form

K =

 fku −fkucotθ −u0
0 fkv

sinθ −v0
0 0 1


General form for the transformation matrix is

 fku −fkucotθ −u0
0 fkv

sinθ −v0
0 0 1

 r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz





Projective Geometry : Camera Calibration

 fku −fkucotθ −u0
0 fkv

sinθ −v0
0 0 1


︸ ︷︷ ︸

intrinsic

extrinsic︷ ︸︸ ︷ r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz



Put simply the general form of the projective transformation is

P =

 P 11 P 12 P 13 P 14

P 21 P 22 P 23 P 24

P 31 P 32 P 33 P 34


Has 3× 4− 1 = 11 degrees of freedom



REMINDER!
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Two co-ordinate systems!

• Remember that we have two measurements of interest
• Measurements on the image plane
• Measurements in the 3D world

• Our interest is to relate the two



Why Projective Geometry?

• A camera is a projective engine
• Simpler representation than affine or Euclidean forms
• Can handle points-at-∞ naturally (fewer special cases)
• Most general representation for our problems



Projective Representations

Reminder
• We are dealing with three types of Projective transformations or

mappings
• Transformations of image plane (H 3×3 : P2 → P2)
• Imaging by a pinhole camera (P 3×4 : P3 → P2)
• Projective change of basis for 3D space (H 4×4 : P3 → P3)



Representation of the Projective Camera

P = K

 R11 R12 R13 T 1

R21 R22 R23 T 2

R31 R32 R33 T 3

 vs.

 P 11 P 12 P 13 P 14

P 21 P 22 P 23 P 24

P 31 P 32 P 33 P 34



• Distinction between perspective and projective cameras
• Perspective is a model for a true Euclidean (rigid) transformation
• Perspective camera is a special case of projective camera
• Projective camera is a purely mathematical engine
• Projective camera is not necessarily physically realisable
• What about degrees of freedom?



Euclidean Transformation in R3

P
′

= RP + T

P
′

= R(P + T )

• First rotate then translate
• Second translate then rotate
• Both are valid representations
• We will prefer the first form over the second
• Warning : Always understand which one is used!



EXTRA MATERIAL
NOT PART OF SYLLABUS



Affine Geometry

Consider v1, v2 ∈ R2

Linear combination: Span {v1, v2}
Affine combination: Line in R2

Linear Combinations

Consider vectors v1, · · · , vk ∈ Rn
Linear Combination:
λ1v1 + · · ·+ λkvk ∈ Rn
λ1, · · · , λk ∈ R

Affine Combinations

Consider vectors v1, · · · , vk ∈ Rn
Affine Combination: λ1v1 + · · ·λkvk
λ1, · · · , λk ∈ R
Restriction: λ1 + · · ·+ λk = 1

Convex Combinations

Restriction: λ1 + · · ·+ λk = 1
Further restriction λi ≥ 0



Affine Geometry

Vector Subspace

• A ⊆ Rn

• 0 ∈ A
• a ∈ A⇒ λa ∈ A
• a, b ∈ A⇒ a + b ∈ A
• Points and vectors coincide
• Equipped with inner product
• Distances and angles preserved

Affine Subspace

• A ⊆ Rn

• No origin
• a ∈ A⇒ λa ∈ A
• a, b ∈ A⇒ λa + (1− λ)b ∈ A
• A− a is a vector space for any
a ∈ A

• Vectors only as differences
(translations)

• Only parallelism is preserved



Affine Geometry

Affine Subspaces

• Consider the 2D plane, but forget origin
• What can two independent observers agree upon?
• Second observer assumes that p is the origin
• Adding two vectors a and b results in p + (a − p) + (b − p)
• When linear combination is λa + (1− λ)b, observers agree
• Observers know the “affine structure” but not the “linear structure”
• Direction is a fundamental property here, not length

wikipedia
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